не "первая дверь" - вопрос не стоит "какая", вопрос стоит "смените выбор или нет".
в данном случае ответ "да", потому что в этом случае шанс 1/2 что выше чем ваш выбор - шанс 1/3
Тоже не верно. Изначально вероятность была 1/3, когда вы делали выбор из трех дверей. Но сейчас, когда одна дверь выпала из числа вариантов, вероятность у любой из оставшихся дверей 1/2. Меняете вы ее или нет, вероятность выбрать правильную не растет. В любом случае 50%.
6 - 6 плохой вариант, т.к. на оставшиеся 2 попытки оставит 6 монет. лучше 4 - 4, тогда остаётся 4 на оставшиеся попытки. 12 / 3 = 4 более универсальный подход
По 4 делить тоже не выходит за 3 взвешивания найти, при первом взвешивании и неравенстве на весах, не понятно какую из частей взвешивать дальше, не известно монета легче или тяжелее.
Невнимательно читаете условие.
6vs6 - и какую половину монет выберете: которая легче, или которая тяжелее? Вам не сказали, в какую сторону монета неправильная: слишком легкая или слишком тяжелая.
Взвесите половины, узнаете, что одна тяжелее другой. И в какой из них монета неправильная?
1. Выгоднее для игрока поменять решение. Рассмотрим ситуацию на примере, когда приз спрятан за первой дверью и ведущий знает где приз. Если вы выбрали изначально неправильно (вторую или третью дверь), то он откроет любую из «пустых» дверей) - например, третью, тогда, по формуле сложной вероятности (если не забыл, то формуле Байеса), оставаясь на своём первоначальном варианте, у нас остаётся вероятности выигрыша ⅓ и ⅔ - что проиграем. В случае, если мы поменяем решение, то как раз ⅔ за то, что мы выиграем.
Хоть это и сложно воспринять неспециалисту, но, если мы не меняем решения, то вероятность выигрыша после открытия пустой двери никак не изменится и остаётся ⅓. Если бы было четыре двери и один приз, то, соответственно, вероятность угадать верную дверь в первой попытке будет равна ¼.
2 задача - классика и её разбирают в школьном возрасте.
3 задача с хитростью. 12 монет надо просто поделить на три группы и взвесить первую со второй. Если первая и вторая группы одинаковые по весу, то их откладываем в сторону и ищем
«левую монету» в третьей группе. Так же можно действовать с монетами в том случае, если же первая и вторая не уравновешены
Как ему перевезти всех через реку, не оставив животных и капусту вместе так, чтобы что-то было съедено?
*********************************************************
А никак!
Это невозможно!
В классическом решении этой задачи не учтено, что волки едят не только коз, но и перевозчиков!
"И овцы целы, и волки сыты, и пастуху - Вечная Память!"
Ошибся: первый ход -- из равномерного распределения, то есть, каждая из дверей выбирается с вероятностью 1/3, а затем просто изменить выбор, когда откроется одна дверь.
Решение третьей задачи:
1. Делим 12 монет на 4 части по 3 монеты. Взвешиваем 1-ю и 2-ю части: если они не равны, то неправильная монета находится в 1-й или во 2-й части. Если они равны, то неправильная монета находится в 3-й или 4-й части (вероятность 1 из 6).
2. Взвешиваем ту часть, в которой предполагаем наличие неправильной монеты с той частью, в которой находятся правильные монеты (1-ю и 3-ю или 2-ю и 4-ю): если они не равны, то наше предположение подтвердилось - неправильная монета находится в 1-й (3-й) части. Если они равны, то наше предположение не подтвердилось - неправильная монета находится во 2-й (4-й) части. (вероятность 1 из 3).
3. Делим часть с неправильной монетой на три по одной монете. Взвешиваем две из них: если они не равны, то одна из них - неправильная. Если они равны, то третья манета неправильная.
Первая дверь
ОтветитьКоза
Капуста
Коза назад
Волк
Коза
6vs6
3vs3
1vs1
If = последняя иначе одна из двух
Видите згожусь Толстого Димона в пресидентзком клубе заменить?!
не "первая дверь" - вопрос не стоит "какая", вопрос стоит "смените выбор или нет".
Ответитьв данном случае ответ "да", потому что в этом случае шанс 1/2 что выше чем ваш выбор - шанс 1/3
Тоже не верно. Изначально вероятность была 1/3, когда вы делали выбор из трех дверей. Но сейчас, когда одна дверь выпала из числа вариантов, вероятность у любой из оставшихся дверей 1/2. Меняете вы ее или нет, вероятность выбрать правильную не растет. В любом случае 50%.
Ответить6 - 6 плохой вариант, т.к. на оставшиеся 2 попытки оставит 6 монет. лучше 4 - 4, тогда остаётся 4 на оставшиеся попытки. 12 / 3 = 4 более универсальный подход
ОтветитьПо 4 делить тоже не выходит за 3 взвешивания найти, при первом взвешивании и неравенстве на весах, не понятно какую из частей взвешивать дальше, не известно монета легче или тяжелее.
ОтветитьНевнимательно читаете условие.
Ответить6vs6 - и какую половину монет выберете: которая легче, или которая тяжелее? Вам не сказали, в какую сторону монета неправильная: слишком легкая или слишком тяжелая.
Взвесите половины, узнаете, что одна тяжелее другой. И в какой из них монета неправильная?
1. Выгоднее для игрока поменять решение. Рассмотрим ситуацию на примере, когда приз спрятан за первой дверью и ведущий знает где приз. Если вы выбрали изначально неправильно (вторую или третью дверь), то он откроет любую из «пустых» дверей) - например, третью, тогда, по формуле сложной вероятности (если не забыл, то формуле Байеса), оставаясь на своём первоначальном варианте, у нас остаётся вероятности выигрыша ⅓ и ⅔ - что проиграем. В случае, если мы поменяем решение, то как раз ⅔ за то, что мы выиграем.
ОтветитьХоть это и сложно воспринять неспециалисту, но, если мы не меняем решения, то вероятность выигрыша после открытия пустой двери никак не изменится и остаётся ⅓. Если бы было четыре двери и один приз, то, соответственно, вероятность угадать верную дверь в первой попытке будет равна ¼.
2 задача - классика и её разбирают в школьном возрасте.
3 задача с хитростью. 12 монет надо просто поделить на три группы и взвесить первую со второй. Если первая и вторая группы одинаковые по весу, то их откладываем в сторону и ищем
Ответить«левую монету» в третьей группе. Так же можно действовать с монетами в том случае, если же первая и вторая не уравновешены
задачи моей молодости 90-х годов :) вряд ли уже сейчас спросят, слишком известные
ОтветитьКак ему перевезти всех через реку, не оставив животных и капусту вместе так, чтобы что-то было съедено?
Ответить*********************************************************
А никак!
Это невозможно!
В классическом решении этой задачи не учтено, что волки едят не только коз, но и перевозчиков!
"И овцы целы, и волки сыты, и пастуху - Вечная Память!"
Фигня все это. У меня лучше задача. Вчера раки были большие по 5 рублеи. А сегодня маленькие, но по 3. Как купить вчерашних раков не имея ни шиша?
ОтветитьВсе решил очень легко
ОтветитьВ первой задаче выбрать одну из дверей из равномерного распределения, а затем с вероятностью 2/3 изменить свой выбор.
ОтветитьОшибся: первый ход -- из равномерного распределения, то есть, каждая из дверей выбирается с вероятностью 1/3, а затем просто изменить выбор, когда откроется одна дверь.
ОтветитьПра манеты няма рашэння. Ніякія камбінацыі не дазволяць у тры прыёмы выявіць адну з 12 манет якая адрозніваецца невядома ў які бок.
ОтветитьКогда пришёл устраиваться на работу, а тебе устроили викторину 🤷♂️
ОтветитьРешение третьей задачи:
Ответить1. Делим 12 монет на 4 части по 3 монеты. Взвешиваем 1-ю и 2-ю части: если они не равны, то неправильная монета находится в 1-й или во 2-й части. Если они равны, то неправильная монета находится в 3-й или 4-й части (вероятность 1 из 6).
2. Взвешиваем ту часть, в которой предполагаем наличие неправильной монеты с той частью, в которой находятся правильные монеты (1-ю и 3-ю или 2-ю и 4-ю): если они не равны, то наше предположение подтвердилось - неправильная монета находится в 1-й (3-й) части. Если они равны, то наше предположение не подтвердилось - неправильная монета находится во 2-й (4-й) части. (вероятность 1 из 3).
3. Делим часть с неправильной монетой на три по одной монете. Взвешиваем две из них: если они не равны, то одна из них - неправильная. Если они равны, то третья манета неправильная.
Адна з іх неправільная - гэта не адказ на пытанне. Адна з іх - гэта і так вядома з умовы.
Ответить